Forum

Hilfe bei Gewinnmaximierung

Seite: 1

Autor Beitrag
Mitglied
Registriert: Jul 2017
Beiträge: 1


--> Schönen guten Abend,
eine Aufagbe, die uns der Professor in Anlehnung an seinen Beispielen gestellt hat, bereitet mir nun schon seit Stunden Probleme. Vielleicht findet sich ja hier ein Mikro-Experte, der mir weiterhelfen kann!?

Aufgabe:

Ein Unternehmen, das auf einem Markt mit vollständiger Konkurrenz tätig ist, produziert mit der Technologie q(L,K)= 4L^0,5 + 10K^0,5 ( L und K geben die eingesetzten Einheiten der Inputfaktoren Arbeit und Kapital an). Die Preise für die Arbeits- bzw. Kapitaleinheit betragen w=1 bzw. r=1. Das Unternehmen verkauft seine Produkte zu p=2 je Einheit. Wie hoch ist der Output, bei dem der Gewinn maximal ist?
Mitglied
Registriert: Jul 2017
Beiträge: 27


--> Hallo,

deine Frage liegt schon ein bisschen zurück, aber vll kann ich noch weiterhelfen. Meines Erachstens muss das Ganze so durchlaufen:

Die Gewinnfunktion ist Umsatz - Kosten, d.h.:

G = p*q(L,K) - wL - rK

einsetzen:

G = 2*(4*L^0,5 + 10*K^0,5) - L - K = 8*L^0,5 + 20*K^0,5 - L - K

Gewinnmaximierung bedeutet hier Maximierung über die Inputfaktoren L und K, zuerst L:

dG/dL = 4/(L^0,5) - 1 = 0
4 = L^0,5
L=16

Und nach K:

dG/dK = 10/(K^0,5) - 1 = 0
10 = K^0,5
K = 100

wieder einsetzen in die Produktionsfunktion q:
q(L,K) = 4* 16^0,5 + 10 *10^0,5 = 116

Damit haben wir die gewinnmaximale Ausbringungsmenge.

Viele Grüße

Chris


Seite: 1

Parse-Zeit: 0.0759 s · Memory usage: 2.71 MB · Serverauslastung: 1.33 · Vorlagenbereich: 2 · SQL-Abfragen: 9